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NUMERICAL AND EXPERIMENTAL STUDY OF A NONISOTHERMAL TURBULENT JET 

WITH A HEAVY IMPURITY 

L. B. Gavin, A. S. Mul'gi, and V. V. Shor UDC 532.529 

Temperature and momentum distributions of the carrier phase are determined ex- 
perimentally and compared to results of numerical calculations using the (k - ~) 
model. 

A second-order turbulence model using transfer equations for pulsation quantities was 
proposed in [i, 2] for calculation of two-phase jets. Experimental material permitting veri- 
fication of models describing isothermal flows was presented in [3-5]. In connection with 
the wide use of nonisothermal two-phase turbulent jets in various equipment, the development 
of models for such flows and their experimental verification are a problem of very practical 
interest. 

We will present below the results of an experimental and numerical study of a nonisother- 
mal turbulent gas-suspension jet. A two-parameter turbulence model using transfer equations 
for pulsation energy and its dissipation rate is employed. 

Mathematical Model. The system of equations describing escape of a nonisothermal two- 
phase turbulent isobaric axisymmetric submerged jet with consideration of velocity and tem- 
perature nonequilibrium between the phases, as obtained in the boundary-layer theory approxima- 
tion, has the following form for the average values of the quantities: 
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Correlations of gas parameter pulsations are represented in gradient form in the system 
of equations 

0Ug <u~ v~> --:--v,--~y , 9g <h~v~> =--%t OTg@ 

In  Eq. ( 6 ) ,  in  a n a l o g y  to  [1 ] ,  t h e  c o r r e l a t i o n  < g p ' ,  up '>  i s  o m i t t e d  s i n c e  i t  i s  n o t  y e t  
p o s s i b l e  t o  model i t ,  w h i l e  in  Eq. (7) t h e  c o r r e l a t i o n s  o f  v e l o c i t y  p u l s a t i o n s  and i n t e r p h a s e  
i n t e r a c t i o n  f o r c e s  a r e  o m i t t e d  because  t h e i r  c o n t r i b u t i o n  to  t h e  b a l a n c e  o f  t h e  t e rms  in  t h e  
f low reg imes  c o n s i d e r e d  i s  s m a l l  in  compar i son  to  t h e  c o n t r i b u t i o n  of  o t h e r  t e rms  of  t h e  equa-  
t i o n .  

The dynamic interaction of the phases in the jet is defined essentially by the resistance 
force F~ and the Magnus force Fm 

F~ O.75cslV~] * * = v ~ . p ~ / ( g 6 ) ,  ~ ~ Vr = Vg --Vp, (12) 

F~ = c~V? • ( ~  - -  O.5rot V~) 9g 9p/9p, (13) 

where the resistance coefficient of a spherical particle is described by the standard resist- 
ance curve 
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b I = 0.179, b 2 = 0.013, and the coefficient Cm for high numbers Rem = 6=[mpl/~ is equal to two, 
as was shown in [6]. The molecular viscosity coefficient of air ~ as a function of temperature 
was calculated by Sutterland's expression [7]. It was assumed that thermal interaction between 
phases is defined by the expresion [6] 

Qgp -- 6Nus (Tg - -  Tp) pp/(p~62). (14) 

The particle turbulent diffusion coefficient Dp was found using the theory of [8]. Deter- 
mination of the additional dissipative terms ep and Op and the correlations of pulsation vel- 
ocities and temperatures of the dispersed phase were performed with consideration of flow in- 
homogeneity [9, i0]. To find these values we use the equations of conservation of momentum 
and energy [Ii], together with the equation of conservation of the moment of momentum of the 
dispersed phase: 
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R e p r e s e n t i n g  a l l  p a r a m e t e r s  in  Eq. (15)  i n  t h e  form of  t h e  sum of  a v e r a g e  and p u l s a t i o n  com- 
p o n e n t s ,  and s u b t r a c t i n g  f rom t h e  e q u a t i o n s  f o r  t h e  i n s t a n t a n e o u s  v a l u e s  t h e  c o r r e s p o n d i n g  
e q u a t i o n s  f o r  t h e  a v e r a g e d  v a l u e s  and n e g l e c t i n g  t h e  s q u a r e s  o f  p u l s a t i o n s ,  we o b t a i n  equa-  
t i o n s  for the Euler pulsation velocities and temperature in integral form at the point r(x, y): 
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Multiplying gqs. (16)-(19) by the corresponding pulsation values and averaging, we find all 
the Euler time correlations needed to complete system (i)-(ii) with consideration of flow 
inhomogeneity. For example, for the correlation moments <Up'(r, t)vp'(r, t)>, <Tp'(r, t). 
Vp'(r, t)> we have expressions 
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In deriving Eqs. (20), (21) the following approximations of Euler time correlations of veloc- 
ity and temperature of the carrier phase were used: 
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i v y ,  (r, t) V~](r, t - F T ) )  -- <Vg, (r, t) Vgj.(r, t)> exp(--%j~), 
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D e t e r m i n a t i o n  o f  t h e  d e c r e m e n t  o f  t h e  t r a n s v e r s e  E u l e r  t i m e  c o r r e l a t i o n  f u n c t i o n  ~vy i s  
b e s e t  w i t h  s i g n i f i c a n t  d i f f i c u l t i e s .  H o w e v e r ,  '~yv c a n  be  d e t e r m i n e d  i n  t e r m s  o f  q~xx f r o m  
t h e  r e l a t i o n s h i p s  f o r  t h e  E u l e r  s p a t i a l  c o r r e l a t i o n s  [12]  Ryy = Rxx + 0 . 5 x d R x x / d x ,  w h i c h  a r e  
known f o r  i s o t r o p i c  t u r b u l e n c e  i n  an  i n c o m p r e s s i b l e  l i q u i d .  W i t h  u s e  o f  t h e  T a y l o r  h y p o t h -  
e s i s  x = ugx, we obtain ~c~v=2q>~x. 

The boundary conditions for system (i)-(Ii) have the form 
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The system of equations with these boundary conditions was solved numerically by the finite 
difference method using an implicit six-point scheme [13]. Error in the calculations was 
monitored by testing the fulfillment of the laws of conservation of dispersed phase flow rate, 
total excess jet momentum, and excess heat flux, which varied no more than 1%. The generally 
accepted empirical constants of [14] were used: cp = 0.09, ok = 1.0, oc = 1.3, ccm = 1.45, 
cc2 = 1.90, cc3 = 0.79. The turbulent Prandtl number Prt = 0.86. The empirical constant 
ct and coefficients ~i, ~2 were taken equal to 0.2, i, I, respectively. 

Experimental Equipment and Measurement Technique. A two-phase nonisothermal flow escap- 
ing into a submerged space was formed in a 3-m long horizontal tube with a diameter of 0.016 
m. Air was supplied from a compressor, and dispersed material in the form of AIiO 3 micropow- 
der with true density pp~ = 3960 kg/m 3 was introduced through a special worm feed which al- 
lowed maintenance of the solid phase flow rate within the limits G = 0-0.05 kg/sec to an ac- 
curacy of 2%. The experimental tube itself was used as the heater element, with electric 
current up to 1300 A passed through the wall. Current was regulated by a thyristor regulator, 
permitting application of power levels up to 13 kW to the tube. The maximum temperature head 
of the two-phase mixture at a flow concentration of ~ = Gp/Gg = 1.5 kg/kg reached 800~ Car- 
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Fig. i. Initial conditions: a) gas (i, 3) 
and particle (2, 4) velocity profiles; b) 
impurity mass flow distribution; c) rela- 
tive excess temperature profile: i, 2, 5, 
6) Tgz/Ts = 2.36; 3, 4) Tgz/Ts = i, Ts = 
291~ Ug, Up, m/sec; ppup, kg/(mi-sec). 
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Fig. 2. Distribution of relative gas phase momenta along tube 
axis (a) and over cross section at x = r 0 = 37.5 (b): i, 2) 
Tgz/Ts = 2.36; 3, 4) i; i) ~ = 0; 2) 1.41; 3) 1.52; 4) i.ii. 

rier phase temperature was measured by Chromel-Copel thermocouples. Impurity mass flux dens- 
ity and momentum of the gas phase were determined by an isokinetic sampling tube [15], with 
collector section made of the solid alloy VK-6 and output orifice diameter of 0.0016 m. Com- 
ponents of the tube were silver soldered together for improved operation at high concentra- 
tions of the abrasive dispersed phase and high temperature. The experimental apparatus al- 
lowed generation of a steady-state two-phase nonisothermal jet and measurement of dynamic 
and thermal parameters of the flow at the exit from the tube and within the volume of the 
jet. 

Results of Numerical and Experimental studies. Figure i shows the escape conditions 
found in experiments with particles 6 = 5'i0 -s m in diameter for isothermal and nonisothermal 
cases. There is a marked velocity slippage of the phases: in the isothermal flow at Ug m = 
29.3 m/sec the solid phase velocity Upm = 26.5 m/sec (Upm/Ug m = 0.90), while in the noniso- 
thermal flow at ug m = 63.5 m/sec the particle velocity upm = 50 m/sec (Upm/Ug m = 0.79). The 
impurity mass flow densities coincide for the two cases. 

To perform the numerical study it is also necessary to know the quantities Tp0(y), Vp0(Y) , 
~p~0(g), k0(y), s0(y) in the initial section of the jet. Preliminary analytical calculatlons 
show that there is temperature inequality between the phases at the tube output, such that 
Tp0(Y) = 0.8Tg0(y). This result was used in the calculations. Transverse particle velocity 
was set equal-to zero. Due to the lack of experimental data on ~p~0(g), k0(y), s0(y) the 
angular velocity of particle rotation was chosen to make the calculation results coincide 
with the experimental data on distribution of a dispersed impurity of similar coarseness in 
an isothermal jet [i], and the pulsation energy and its dissipation rate were determined 
by solution of the transfer equations for k and s, describing the two-phase flow in the stabil- 
ized segment of the tube [16]. 

Figure 2 shows the change in gas phase momentum in isothermal and nonisothermal jets 
(here and below solid lines represent calculation results). It is evident that in the noniso- 
thermal case drop in axial momentum occurs more rapidly in a single-phase jet than in a two- 
phase jet, due to the presence of momentum exchange between the phases. Upon escape of a jet 

with a dispersed impurity, attenuation of axial momentum occurs more intensely in the noniso- 
thermal case than in the isothermal case at similar concentrations. The major cause of this 
is the following. In the transfer equations for ~ = (Ug, k, s) in the nonisothermal case, 

1 0 O~ 
aside from the term --y ~ (gvt~ ) describing diffusion of the corresponding quantities in 

the isothermal case, there is a second term vt/pg(Spg/Sy)(8~/Sy). In the case of positive 
superheating this term encourages more intense transfer of momentum in the transverse direc- 
tion, which leads to more rapid attenuation of the longitudinal gas velocity along the jet 
axis. This also. encourages an increase in turbulent viscosity along the jet axis due to in- 
tensification of diffusion of turbulent energy and its dissipation rate in the direction of 
the axis. Thus, scattering of momentum in the two-phase jet occurs more rapidly in the non- 
isothermal case than in the isothermal one, and most intensely of all in a single-phase heated 
jet (Fig. 2b). 

Study of the heat-transfer process shows (Fig. 3) that the drop in axial excess gas 
temperature in a single-phase jet occurs more rapidly than in a two-phase jet with the same 
initial superheating, which can be explained by the presence of interphase heat exchange. 
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Fig. 3. Distribution of axial excess gas temperature: 
2.36, i) ~ = 0; 2) 1.41. 
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Fig. 4. Jet boundaries at half-momentum level (i, 2), half-ve- 
locity (3, 4), half-excess temperature (5): i, 3) Tgz/Ts = i; 
2, 4, 5) 2.36. 

In the initial segment the particle temperature rapidly reaches the gas temperature, and in 
the main segment, due to their greater thermal inertia, the particles cool more slowly than 
the gas, transferring heat to the latter by interphase heat exchange. 

It follows from Fig. 4 that expansion of the nonisothermal jet occurs more intensely. 

As is evident from Figs. 2-4, the experimentally obtained results agree satisfactorily 
with the numerical results obtained by the proposed model 

NOTATION 

x, y, longitudinal and transverse coordinates; u, v, Vi, projections of average velocity 
onto x, y, i axes; p, p~ distributed and true densities; h, enthalpy; T, temperature; k, e, 
kinetic energy of turbulent pulsations and its dissipation rate; v, ~t, X, Xt, coefficients 
of molecular and turbulent kinematic viscosity and thermal conductivity of gas; cg, cp, spe- 
cific heats of gas and particles at constant pressure; p, gas pressure; Rg, gas constant; 
Wp~, projection of particle rotation angular velocity vector on axis perpendicular to plane 
xy; ~ = mp@ + 0.58ug/3y, relative angular velocity; Dp, transverse particle diffusion coeffi- 
cient; 6, particle diameter; r0, tube radius; G, flow rate; FD, viscous resistance force; 
Fm, Magnus force; Re, Nu, Pr, Reynolds, Nusselt, and Prandtl numbers; Qgp, interphase heat- 
exchange intensity; X, dimensionless vortex deformation rate; t, ~, time; TE, AE, Euler time 
and space scales; Rij, correlation coefficients; ~u, a~ Euler time correlation exponents; 
~ij, coefficient; 8, Sm, 0, quantities inversely proportional to particle translational, rota- 
tional, and thermal relaxation times; 6ij, Kronecker symbol; cp, ok, og, CEI , CEz, CgS, empir- 
ical constants. Symbols with subscripts g, p indicate gas and particle parameters; z denotes 
flow in initial section on jet axis (x = 0, y = 0); 0, initial section (x = 0); m, on jet 
axis (y = 0); s, in submerged space (y = ~); i, j, parameters referring to axes i and j; *, 
instantaneous, and ', pulsation values of parameters. 
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ANALYSIS OF LIQUID DROPLET DEFORMATION IN A GAS FLOW 

V. V. Voronin UDC 532.529.6:541.18.053 

The small perturbation method is used to obtain equations describing the dynamics 
of a liquid droplet in a flow of ideal incompressible gas. The stability criteria 
and droplet disintegration time are determined. 

The principles of motion of a liquid droplet in a gas flow with some relative velocity 
are of great practical interest and have been actively studied for several decades. The pres- 
ent state of studies of liquid droplet interaction with a carrier flow is presented quite 
fully in the review [i]. In particular, analysis of numerous experimental data has estab- 
lished a qualitative classification of the main types of droplet disintegration in a gas flow, 
which develops upon increase of the Weber number We; at We ~ i00 droplet breakup is preceded 
by a "parachute"-type deformation which can be described within the framework of the approximate 
theory of flow over a deformed body. 

Linearization of the defining equations establishes that a droplet in a gas flow spreads 
in the transverse direction with the form of the flattened droplet being close to an ellipsoid 
of rotation. Spreading of the droplet, which is maintained in the process of deformation 
of the ellipsoid form, was studied in detail in a number of works [2-5], in which simple 
asymptotes were obtained for the transverse deformation together with stability criteria for 
the droplet. 

An analytical method for calculation of nonsteady-state motion and spreading of plane 
and axisymmetric drops of a viscous liquid in a gas flow was developed in [6]. This method 
is based on expansion of the Navier-Stokes equation in a small parameter, while the boundary 
problem is reduced to solution of an infinite system of differential equations with constant 
coefficients. In the absence of viscosity the system contains a finite number of equations 
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